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' LINEARIZED IMPULSIVE EARTH APPROACH GUIDANCE ANALYSIS

By Thomas B. Murtagh
SUMMARY

A comparative analysis is presented of a variety of guidance laws
for Earth-entry corridor control on the return leg of a conjunction-
class Mars mission., The fixed and variable time-of-arrival guidance
laws used for the analysis are derived in a general form. Particular
solutions are generated by specification of the constraint equations
for the state variables. For the variable time-of-arrival guidance
laws, a generalized equation is developed which provides for the
propagation of the position and velocity dispersions to the nominal
time of arrival at the target. The development includes a calculation
of the timing error predicted by the guidance equations. For the
type of Earth entry problems considered, results of the analysis

‘ indicate that the best overall performance is produced by a variable
time-of-arrival guidance lLaw which constrains radial, cross-range,
and flight-path angle errors while it minimizes the magnitude of the
commanded velocity correction.

INTRODUCTION

The linear theory of impulsive velocity corrections for space
vehicle guidance has been discussed in references 1 through 5.
However, the guidance theory contained in these references ig restricted
to a discussion of fixed and variable time-of-arrival position guidance
and no attempt is made to generalize the formulation of the guidance
laws. A similarity of form between these guidance laws is evident,
which suggests that they are somehow mathematically related. Cicolani
(ref. 6) noted this similarity and attempted to determine the general
properties of linearized impulsive guidance laws by use of the concepts
‘ of linear vector spaces and the pseudoinverse of a matrix. A more
straightforward approach to the problem was made by Tempelman (ref. T)
who began with a generalized linear constraint equation and developed
a solution to the impulsive guidance problem.




The analysis presented in this document was motivated by
Tempelman's work and is an attempt to simplify his approach to the
development of a general formulation of linearized impulsive guidance
laws. An extension of Tempelman's developement is the derivation
of a generalized equation for the variable time-of-arrival guidance
laws which provides for the propagation of position and velocity
dispersions to the nominal time of arrival at the target. A
calculation of the timing error predicted by the guidance equations is
also included. A comparison of a variety of guidance laws for the
Earth entry phase of a conjunction-class Mars mission is presented
to illustrate the theory outlined in the preceding paragraph.

SYMBOLS
a acceleration vector
D distance from nominal target point defined by equation (23)
E 6 by 6 uncertainty covariance matrix defined by equation (43)
e uncertainty in state vector estimate
G 6 by 6 guidance-law matrix defined by equation (9)
Gl’ G2 3 by 3 submatrices of G
H 3 by 3 guidance-constraint matrix used in equation (6)
h orbital angular momentum vector, h = R x ¥
I identity matrix of appropriate dimensions
X ' 3 by 3 guidance-constraint matrix used in equation (6)
L guidance-constraint vector used in equation (6)
M 6 by 3 compatibility matrix defined by equation (L5)
N 3 by 3 covariance matrix of velocity correction execution
error defined by equation (k42)
; 6 by 6 dispersion covariance matrix defined by equation (50)
P 6 by 6 dispersion covariance matrix defined by equation (38)




e}

<<l <

[}

magnitude of R
position vector
current time
time of arrival at target point
magnitude of ¥
velocity vector _
R

state vector, X =

v
sensitivity vector that relates flight-path angle error to
position vector errors

sensitivity vector that relates flight-path angle error to
velocity vector errors

timing error sensitivity to position vector errors
timing error sensitivity to velocity vector errors

6 by 6 transition matrix defined by equation (36)

‘flight-path angle

small variation of ( )

magnitude of AV

velocity correction vector defined by equation (5)
vector defined by equation (15)
6 by 6 state transition matrix defined by equation (3)

3 by 3 submatrices of ¢

6 by 6 transition matrix defined by equation (3T7)

6 by 6 matrix defined by equation (48)




T arbitrary time

3 velocity correction implementation error vector
Superscripts:

+

( ) after maneuver or measurement

( ) vefore maneuver or measurement

T transpose of ( )
-1 inverse of ( )
<( )> expected value of ( )

ANALYSIS

Initial and Final State Vector Error Relationship

-t
The terminal state vector error: 86X (T) is related to the initial

=t
state vector error 6X (t) through the state transition matrix
Q(T,t) as

s7 (1) = o(T,0)6% (t) + {V(T)]w (1)
a(T)

where V(T) and a&(T) are the velocity and acceleration, respectively,
of the nominal trajectory at the nominal time of arrival at the

target T. If 6X(t) is defined by
= 6R
$X(x) = [_“’] (2)
: 5V(t)
 where <t is some arbitrary time and if the state transition matrix
¢(T,t) is partitioned into
¢,(T, t)  ¢,(T, t)
o(T, t) = (3)
95(T, t) ¢, (T, t)

then equation (1) can be written (ref. T)

O
jo o]
—
—
~—
I

6,68 (¢) + 8,87 (t) + T(T)6T (ka)
T) = 4,88 (¢) + $,67" (t) + B(T)6T (4b)

where the timescripts on the transition matrix have been omitted for
notational simplicity.




Generalized Equation for the Velocity Correction

The velocity correction AV(t) 1is defined by
AT(t) = 67" (t) - 67 (¢) (5)

If terminal constraints consistent with the guidance law being
investigated are imposed and if those constraint relationships are
substituted into equation (L), an equation results in the form

§7T () = —k-lusRT(t) - K-1TsT (6)

where K and H are guidance constraint matrices and where L is
a guidance constraint vector. By use of the fact that if the maneuver
is assumed to be impulsive, that is,

58T () = 68 (t) ( (7)

and if equations (5), (6), and (7) are combined with the expression
for 6T as a function of position and velocity deviations at the time
of the correction, a general form of the equation for the velocity
correction is derived as '

V() = G8R™(£) + 6,87 (¢) (8)

where Gl and G2 are submatrices of the guidance law matrix

(refs. 4 and 6).

Fixed Time-of-Arrival Guidance Laws

For fixed time-of-arrival (FTA) guidance laws &T = 0 and
equation (6) becomes

st (t) = K 1HSR (t) (10)
The most commonly used FTA guidance law imposes the constraint that

sRT(T) = 0 (11)

and is referred to as FTA position guidance (refs. 1 through L).
Use of equations (7) and (11) with equation (La) produces the

expression + .
57 (£) = —6,716, R (t) - (12)

A comparison of equations (10) and (12) indicates that for this
guidance law K = ¢2 and H = ¢l. Use of equations (5) and (12) and




comparison of the resultant expression with equation (8) produces

G

G2 = -I

for an FTA position guidance law where I is the identity matrix.
Another type of FTA guidance law might seek to constrain the radial,
cross-range, and flight-path angle errors at some terminal time T.
The radial error is defined as the component of the position error
along the radius vector; the cross-range error is defined as the
component of the position error along the orbital angular momentum
vector. The resultant constraint equations are

FTsTt () - TieRT(T)

-1
'¢2 ¢1
(13)

=0
RLsRT(T) = 0 (14)
ALsET(T) = 0

where h is a vector in the direction of the orbital angular
momentum and where

(Rx V) x ¥
V2
If the constraint equation (14) is combined with equation (4), the

following expressions are produced for the matrices K and H in
equation (10).

n =

(15)

—- w—
=T =T
=T
K = R ¢2 ' (16a)
_T
- -
_T T
=T
H = R¢, (16v)
T
h
- 1 J

The matrices G and G are shown to be

1 2 1
G. = -K~1lH
1 } (17)

G, = -I

Other types of FTA guidance laws can be generated if the appropriate
constraints are imposed and if the final expression is in the form of




equation (8). Stern (ref. 2) develops FTA guidance laws which are
derived by the imposition of constraints on certain combinations of
the Keplerian orbital elements.

Variable Time-of-Arrival Guidance Laws

The most popular variable time-of-arrival (VTA) guidance law is

=+
the VTA position guidance law which requires that oR (r) =0 and
which computes 6T (8T # O for any VTA guidance law) to minimize the

magnitude of the commanded velocity correction AV(t). For this
guidance law, the matrices K and H in equation (6) are equal to
¢, and ¢, respectively, and the vector T 1is equal to V(T)
(refs. 1 through L4).

A similar VTA guidance law is generated if the constraints in
equations (14) (i.e., null radial, cross-range, and flight-path angle
errors) are imposed to produce the expressions for the matrices K

and H in equation (16) and the following equation for the vector L
required for the general equation (6).

(7% - vTv;

L= RYY (18)

0

\—— -

where n is defined in equation (15). Combination of equations (5),
(6), and (7) results in

£T(t) = -KTIHSR (t) - 6V (t) - K lL8T (19)

The neXt step is to compute 8T so as to minimize the magnitude of
the commanded velocity correction. This computation requires the
solution of the following expression for §T.

=T AV (t)
AV (t) STery - 0 (20)

Use of equations (19) and (20) yields

]
1
=
=3
A
[}
s}
o2
=]
!
ct
+
=~
[
—
[l
=]
(o]
<il
|
ct

6’1‘:_

(21)



Substitution of equation (21) into (19) and comparison of the resultant

equation with equation (8) provides expressions for Gl and G2.

[®]
1

-1
G2K H

(22)

_ (k) xn)T
G2 = — -
(K™1T) " (x~1T)

The constraints on radial, cross-range, and flight-path angle
errors represented by equations (14) may also be used to construct a
VTA guidance law which computes 6T to minimize the distance from
the nominal target point D. This distance is given by the expression

-+ =+
[s&" (7)) TsR" (1) (23)
where ORT(T) is defined by equation (La) (ref. 7). The equation

=+
T 38R (T)
= 2k

[GR (T] m—' 0 . (2k)
must be solved in combination with the equation for SR (T) to
produce
(7 - ¢2K'IE)T(¢ - 6 KTTH)SR(¢)
8T = (25)

Substitution of equation (25) into equation (l9) and comparison of
the resultant expression with equation (8) produces the following
equations,

K-IT(V - ¢2K‘1E)T(¢l - ¢ K-1H)
G, = 2 - K"lH
1 - - T, — _
(Vv - ¢2K—1L) (Vv - ¢2K-1L) $

(26)

G, = -I

o
The last type of VTA guidance law to be considered is one which

=+
requires that 6R (T) = 0 and which computes 6T such that the
variation in flight-path angle at the target after the correction is

zero. The relationship between the flight-path angle variation 6y+(T)
and the variations in position and velocity is given by equation (27T)

(ref. W), . T+ .
sy*(r) = 2,6 (1) + 2,767 (1) (27)



where
(28)

.and where
— (29)
VZ|R x V|

The vectors 21 and 22 represent the sensitivity of the flight-path

angle error to position and velocity errors, respectively. If
equation (27) is combined with equation (4b) and if the following
constraints are imposed

687 (T) = 0 (30)
+
§y (1) =
then
Z2T¢36R (t) + z2T¢hav+(t)
6T = - —— - (31)
A Z2 a
If equation (31) is substituted into equation (19) [K = ¢,, H = ¢
and L = ¥(T)] and if the result is compared with equation (8),
equation (32) results.
_ T a5 T, =115 - om T }
Gy = - {}22 a)¢2 - V22 ¢h] [(zza)¢1 ~ v22 65 (32)
Gy = -I

Error Propagation for VTA Guidance

The equation for the variation in the time of arrival &7 may
be cast into either of the following forms.

o = &, 76K (¢) + B, 6T (¢) (33)
or
6T = 62T6§+(t) + EQTGV‘(t) (3k4)

where El, 52, and El’ 32 are the sensitivities of the timing error

to position and velocity errors, respectively. If the expression for
ST is 1like equation (33), then the equation for propagation of the
state vector errors (eq. 1) becomes

s¥H(T) = 1(T,t)6% (t) (35)
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where

r(r,t) = o(7,t) + ¢(7,t) (36)
.and
et 9B,
o' (T,t) = . 7 (37)
aa aB
aal a 1

The covariance matrix of state vector dispersions is defined by
P(1) = <6X(1)86% (1)> (38)

wheré the angular brackets denote the expected value operator. If
equation (35) is multiplied on the right by its transpose and the

expected value of the result is used with the definition in equation (38),

the following equation is produced.

+

P () = r(1,t)P (t)r1(T,b) (39)
where (ref. k)
P (t) = [T + Gl[P~(t) - E-(t)][T + 61T + E*(¢) (L0)
and
+ 0 0
E(t) =E(t) + (41)
0 N(t)

The matrix N(t) is the covariance matrix of the velocity
correction error (derived and discussed in ref. 3) and is defined by

N(t) = <E(6)E(¢)> (k2)
where £(t) is the velocity correction implementation error vector.

The matrix E(t) is a measure of the navigation system accuracy
(refs. 1, 3, and 8) and is defined by

- ~T
E(t) =<e(t)e (1)> (L43)
where e(1) 1is the uncertainty in the state vector estimate.
If the expression for 6T is in the form of equation (34), then

the derivation of an equation similar to equation (39) requires more
complex mathematical manipulations. If is shown in reference 1 that

X (£) = (I + G)6X(t) + 6a~(t) - ME (Lh)
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where o
M= (ks)
| T
Substitution of equation (34) into equaticon (1) yeilds
(o= T o= T
. + Va2 V82 .
§X7(T) = 986X (t) + | __ | 8XT(r) (46)
20, aBp

and insertion of equation (44) into the above expression produces
§XT(T) = 0(T,t)6% (t) + 96" (t) - oME (L7)
where
o(T,t) = o(I + G) + & (48)

If equation (47) is multiplied on the right by its transpose and if the

expected value of the result is used and terms are collected equation (L9)

is produced.

p*(1) = B¥(1) + o[(1 + c)P7(t) - GE™(t)]erT

rorPre NI + )T - B (5)6 et (49)
+ 0P (1)
where
BY (1) = 0P (t)eT (50)

RESULTS AND DISCUSSION

Reference Trajectory and Assumptions

The reference trajectory chosen to illustrate the guidance laws
developed in the preceding sections was a 1977 Mars stopover mission
discussed in considerable detail in reference 8. This mission consists
of a 360-day outbound phase, a 300-day parking-orbit phase, and a
320-day return phase. The root-mean-square (RMS) position and velocity
errors at the termination of the orbit phase were 2 n. mi. and 5 fps,
respectively. The uncertainty covariance matrix E(t) was updated on
the return leg by processing both Earth-based radar and onboard optical
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navigation data with a Kalman filter; the dispersion covariance
matrix P(t) was updated with three FTA velocity corrections that
required a total AV of 55 fps.

The maneuver required to target the spacecraft to the entry corridor

was assumed to be executed at the Earth sphere of influence (SOI),
which is approximately 500 000 n. mi. from the Earth. The nominal
entry conditions were arbitrarily chosen to be an entry altitude h

of 400 000 feet and an entry flight-path angle (FPA)

, B
Y Of -6° which

resulted in an entry speed V of 38 250 fps. The inclination of the

E

entry trajectory i was T5° with no plane change assumed in the

E
targeting maneuver. The time required for the spacecraft to reach the
entry interface from the Earth SOI was 64 hours.

A plot is presented in figure 1(a) of the SOI midcourse AV as a
function of the entry speed and FPA for hE = 40O 000 feet and

ig = 75°; a similar plot is presented in figure 1(b) for iE = 35°

(a plane change of 40°). The two curves presented on each of these
figures bound the flight-path angle between 0° and -45°, For the
previously specified hp, Vg, and vyg, and ip = 75° the SOI

midcourse AV was 41 fps; for iE = 35°, the AV was 188 fps.

Navigation Results

The RMS entry radius, speed, and FPA uncertainties are presented
in figure 2. It was assumed that Earth-based radar range and range-
rate navigation data were processed every hour from the time of the
S0I midcourse maneuver. The solid curves on the figures represent the

uncertainties for iE = T5°, while the dashed curves represent data

for iE = 35°, It is evident from these plots that the radar measure-

ments reduce the uncertainty in the entry parameters to a negligible
level after 20 hours of tracking.

FTA Guidance Results

The RMS entry radius, speed, and FPA dispersions are presented
in figure 3 as a function of the RMS AV for the two FTA guidance
laws considered in this paper. For this data and for the VTA guidance
data in the following section, the guidance maneuver execution errors,
represented by N(t) in equation (L2), assume a 1 percent proportional



13

error, a 1° pointing error, and a 0.5 fps engine cutoff error

(ref. 4). Farth-based radar measurements were assumed to be made
once per hour.

The guidance law attempts to null position vector errors at
the nominal time of arrival at the entry interface [fig. 3(a)]. It
is evident from the figure that there is an optimum time at which to
execute the maneuver in order to produce minimum values of the entry
parameter dispersions for the smallest propellant expenditure. However,
the optimum time is different for each of the entry parameter dispersion
plots. The techniques used in reference 9 could be used to determine
analytically the optimum single correction times, but this is beyond
the scope of this paper.

The guidance law attempts to null radial, cross-range, and FPA
errors at the nominal time of arrival at the entry interface [fig. 3(b)].
Comparison of the curves in figure 3(b) to those presented in figure 3(a)
indicates that the radius and speed errors are approximately equal for
either guidance law but that the FPA control is better for the guidance
law illustrated in figure 3(b).

VTA Guidance Results

The RMS entry radius, speed, and FPA dispersions are presented in
figure 4 for the four VTA guidance laws considered. The entry speed
errors in figure 4 are generally lower than the corresponding errors
presented in figure 3 for the FTA guidance laws. This difference is
misleading because for the VTA guidance laws there is an associated
plot of the RMS timing error (data not shown) which maps into a
velocity error, and this error must be added to the speed error computed
from the VTA guidance equations. Typical timing errors for the VTA
guidance laws considered range from 150 to 300 seconds. However, the
relaxation of the constraint on the time of arrival permits a smaller
RMS AV requirement for specified radius and FPA errors. For example,
suppose that an RMS AV of 25 fps is allowed. In figure ki(a), this AV
is shown to produce a radius error of 0.7 n. mi. and an FPA error of
0.05°; in figure 4(b), the radius and FPA errors are 0.6 n. mi. and
0.005°, respectively; in figure l(c), the radius and FPA errors are
3.0 n. mi. and 0.14°, respectively; and in figure 4(d), the resultant
radius and FPA errors are 2.2 n. mi. and 0.01°, respectively. These
data indicate that the best overall performance is produced by the
guidance law which attempts to null radial, cross-range, and FPA errors
while it minimizes the magnitude of the commanded correction [fig. 4(b)].
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CONCLUDING REMARKS

A comparative analysis of a variety of guidance laws for the
Earth entry phase of a conjunction-class Mars mission has been presented.
The fixed and variable time-of-arrival guidance laws used for the
analysis were derived in a general form. The results of the analysis
indicate that a VTA guidance law which constrains radial, cross-range,
and flight-path angle errors while it minimizes the magnitude of the
commanded correction produces the most satisfactory performance.
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(B) NULL RADIAL, CROSS-RANGE, AND

FLIGHT-PATH ANGLE (FPA) ERRORS;
MINIMIZE THE MAGNITUDE OF
THE COMMANDED CORRECTION.

FIGURE 4.~ CONTINUED.,
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(C) NULL RADIAL, CROSS-RANGE, AND FLIGHT-PATH
ANGLE (FPA) ERRORS; MINIMIZE THE DISTANCE
TO THE NOMINAL ENTRY POINT.

FIGURE 4.- CONTINUED. , '
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(D) NULL POSITION VECTOR ERRORS:
CHOOSE TIME VARIATION SUCH
THAT FLIGHT-PATH ANGLE (FPA)
ERRORS ARE ZERO.

FIGURE 4.- CONCLUDED,
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